当仔细品读一部作品后,相信你心中会有不少感想,此时需要认真地做好记录,写写读书笔记了。那么读书笔记到底应该怎么写呢?以下是小编收集整理的《数学之美》读书笔记,仅供参考,希望能够帮助到大家。
《数学之美》读书笔记 篇1
《数学之美》,一个从事多年工作的谷歌研究员眼中的数学。令我大饱眼福的是,大学里面的数学知识竟能如此广泛运用到了计算机行业中。
在语音识别、翻译,还有密码学领域,有着许多基于概率统计的模型和思想。当然,贝叶斯公式是基础,应用到隐含马尔科夫链模型,神经网络模型。
在搜索中,一些相关性的计算,无不用到了概率的知识。在新闻分类中,用到了一些有关矩阵特征值、相似对角化的知识。当然,在图像处理方面,矩阵变换可谓是无处不在。另外,在识别方面,有一些通信模型,涉及到了信道、误码率、信息熵。
最近刚开学也没什么事,所以就想随便找几本书看一下,但最好别是那种太艰深晦涩的书。8月份一直到现在,吴军写的这本12年5月出版的《数学之美》一直盘踞京东、亚马逊等各大网上商城科技类图书的榜首,当然,还有早些时候出版的《浪潮之巅》也排在很靠前的位置。心想市场的力量应该能帮我挑出好书吧,于是就从图书馆借了一本来,一直到今天晚上把它给看完了。
因此想写一点东西来总结、反思一下,反正刚开完班会也没什么事干。
写在前面的建议:如果你不讨厌数学的话,强烈推荐这本书,网上也可以下到电子版,不过阅读感觉上还是很不一样的。
废话就不多说了,《数学之美》其实是一本科普类的读物,所面向的是接受过普通高等教育的人,完全不需要在特定领域有很深的造诣就可以看懂,大概懂一点线性代数、概率统计、组合数学、信息论、计算机算法、模式识别最好,所以尤其适合信科的人看。内容大部分是和人工智能、计算机相关的,这并非我所学的专业,但作者比较擅长将看似复杂的原理用简明的语言表达出来,所以可读性还是很好的。
吴军是清华大学毕业的,之前任职于google,后来到了腾讯,这些文章都是发表在google黑板报上的,后来经过了重写,所以网上下载的和书本内容有所差异。由于吴军本人是研究自然语言处理和语音识别的,所以统计语言模型的东西可能会多一点,不过我觉得这丝毫不妨碍全书数学之美的展现……感觉收获还是挺多的,知识上的有一些,但更多还是思维方式上的。作者举了很多例子试图让人明白很多看似复杂的高科技背后,基本原理其实是出乎意料简单的。比如高准确率的机器翻译,看上去好像是计算机能够理解各国语言,隐藏在背后的却是很多具有大学理科学历的人都非常清楚的统计模型和概率模型;再比如拼音输入法的数学原理,早期的研究主要集中在缩短平均编码长度,比如曾经流行一时的五笔输入法,而现今真正实用的输入法却是有很多信息冗余、编码长度比较长的拼音输入法,作者从信息论和市场的角度做了简单的阐述;又比如新闻的自动分类,许多非it领域的人可能会认为计算机可以读懂新闻并进行分类,而实际上只是特征向量的抽取、多维空间中向量夹角的计算,非常非常简单,但凡学过一点线性代数的人绝对是一看就懂的……当然,完美的实现还需要考虑很多细节和现实的情况,但这并不是这本书所关注的地方,数学之美在于其简洁而不是繁琐。
除了对于具体信息技术的剖析之外,作者还花了很大篇幅来讲一些杰出人士的成长过程,特别是把这些人的成长经历和中国学生的成长经历作对比。虽然作者并没有明说,但字里行间多少流露出对于中国高等教育以及很多中国企业的批评,一是教育的功利性,缺乏宽松的独立思考的环境,即使学了一堆理论也难有用武之地,自然也就缺乏创新性的成果;二是中国企业的短视,大部分都不舍得在新框架开发上投资,而是坐享学术界和国外企业的研究成果。
总结一下呢,《数学之美》事实上不能带给你编程能力的提升,也没法让人的数学水平有显着的提升,但它在很大程度上让你跳出教科书式的繁琐细节的束缚,能够从更宏观的角度来思考信息世界背后的数学引擎的运行原理,让人明白看似很高级、复杂的东西背后其实并不如我们所想象的那样复杂,而我们所学的“枯燥”的数学真的可以“四两拨千斤”,改变亿万人的生活。
《数学之美》读书笔记 篇2
很多人都觉得,数学是一个太高深、太理论的学科,不接近生活,对我们大多数人来说平时也根本用不到,所以没必要去理解数学。但事情真的是这样吗?
其实不然,数学一直渗透在我们生活的各个方面,尤其是在今天这个信息时代,很多简单朴素的数学思想,能发挥一般人很难想象的巨大作用。比如,计算机处理自然语言,用到的最重要工具是统计学的思想;计算机对新闻内容的分类,依靠的是数学里的余弦定理;而电子电路的基本逻辑,则来源于仅有0和1两个数字的布尔代数。
在《数学之美》里,吴军用自己在工作中使用数学的亲身经历,为我们展现了数学的重要性,以及他对数学之美的理解。吴军是“得到”app专栏《吴军的谷歌方法论》的主理人。曾先后供职于谷歌和腾讯,是著名的自然语言处理专家和搜索专家。同时,他还是位畅销书作家,除了这本《数学之美》以外,还写过《文明之光》《智能时代》《浪潮之巅》等多本畅销书。
《数学之美》读书笔记 篇3
最近看了这本《数学之美》,不得不感叹一句,可惜早已身不在起点。
我读书的时候,数学成绩一直都很好,虽然离开学校已经10多年,自觉当初的知识还是记得很多,6~7年前再考线性代数和概率论,还是得到了很高的分数。不过我也和大部分人一样,觉得数学没有太多用处,特别是高中和大学里面学的,那些三角函数,向量,大数定律,解析几何,除了在考试的题目里面用一下,平时又有什么地方可以用呢?
看了《数学之美》,惊叹于数学的浩瀚和简单,说它浩瀚,是因为它的分支涵盖了科学的方方面面,是所有科学的理论基础,说它简单,无论多复杂的问题,最后总结的数学公式都简单到只有区区几个符号和字母。
这本书介绍数学理论在互联网上的运用,平时我们在使用互联网搜索或者翻译功能的时候,时常会感叹电脑对自己的了解和它的聪明,其实背后的原理就是一个个精美的算法和大量数据的训练。那些或者熟悉或者陌生的数学知识(联合概率分布,维特比算法,期望最大化,贝叶斯网络,隐形马尔可夫链,余弦定律,etc),一步步构建了我们现在所赖以生存的网上世界。
之所以觉得自己早已身不在起点,是因为上面这些数学知识,早已经不在我的知识框架之内,就算曾经学过,也不过是囫囵吞枣一样的强记硬背,没有领会过其中的真正意义。而今天想重头在来学一次,其实已经不可能了。且不说要花费多少的精力和时间,还需要的是领悟力。而这一些,已经不是我可以简单付出的。
不像物理、化学需要复杂的实验来验证,很多数学的证明,几乎只要有一颗聪明的头脑和无数的草稿纸,可是光是这颗聪明的头脑,就可以阻拦掉很多人。有人说多读书就会聪明,我不否认,书本的确会提供很多知识,可是不同的人读同一本书也会有不同的收货,这就限制于每个人的知识框架和认知水平。就如一个数学功底好过我的人,看这本书,就会更容易理解里面的公式和推导出这些公式的其他运用点,而我,只能站在数学的门口,感叹一句,它真的好美吧。
当然,我暂时无法在实际生活中运用这些数学公式,可是书中提到的一些方法论,还是很有帮助的
1)一个产业的颠覆或者创新,大部分来自于外部的力量,比如用统计学原理做自然语言处理。
2)基础知识和基础数据是很重要性,只有足够多和足够广的数据,才可以提供有效的分析,和验证分析方法的好坏。
3)先帮用户解决80%的问题,在慢慢解决剩下的20%的问题;
4)不要等一个东西完美了,才发布;
5)简单是美,坚持选择简单的做法,这样会容易解释每一个步骤和方法背后的道理,也便于查错。
6)正确的模型也可能受噪音干扰,而显得不准确;这时不应该用一种凑合的修正方法加以弥补,而是要找到噪音的根源,从根本上修正它。
7)一个人想要在自己的领域做到世界一流,他的周围必须有非常多的一流人物。
《数学之美》读书笔记 篇4
在网上看到有人推荐吴军博士的《数学之美》,尽管我从事社会科学研究,但对数学的推崇一直如此,所以买来一读,我的真切体验正如吴军博士在书的后记中所说,把自己“境界提升了一个层次”。
那么,对我而言,到底提升了什么境界呢?
首要的肯定是思想境界。在未读这本书之前,我知道对于这个世界的事件形成的信息集合,人类只有两种方式可以表达,一个是数字,一个是语言。整个实数的集合是无穷个,而且每个数字都是唯一的;整个世界中的事件也是无穷个的,而且每个事件也时独一无二的,这样数学中的数字集合与世界中的事件集合就构成一个一一对应的关系,所以研究数字之间的关系,实际上就是在研究世界中事件之间的关系。语言中的概念和世界中的事件之间也是可以构成一个对应关系的,但问题是,语言中概念的集合是有限的,所以它和数字集合的对应显然只能是部分对应。
计算机科学的发展,人类需要把语言处理成数字,因为计算机只能识别数字信号,所以“语言的数字化”成为计算机产生以来发展最快、而且最有创新性的领域,而许多华人科学家成为了这个领域的顶尖专家,如李开复,吴军博士是卓越的科学家之一。至此我才感到,在计算机主导的世界中,信息化就是数字化,而最难的数字化、也是最有成就的数字化,就是对人类自然语言的数字化,因为人类的信息几乎100%是用语言承载、传播的,计算机要与人对话,变成智能化的机器,首先要解决的就是语言的数字化问题。但我们在电脑上自如地输入文字时、或者拿着手机通话时,我们跟本没有意识到,那些卓越的语言科学家,早已经把我们的语言,转化成数字信号,通过输入、处理、解码的方式,让我们无障碍地联络、工作。
我似乎感到,语言与数字的关系,就是人与自然关系的接口。套用古希腊毕达哥拉斯学派的观点,加上我的理解,即是,数是万物的本原,语言是人的本原!
吴军博士似乎也在提升我对方法的认识境界。科学研究的思考方式,习惯遵循本质、规律、连续性思维,在语言学研究的早期,人类为了让计算机识别语言,采用建立语言规则和语言规则数据库的办法,但最终以失败告终(20世纪50―70年代),70年代后科学家采用了语言统计模型,研究取得了突飞猛进。语言统计模型的胜利,再一次证明了宇宙量子模型的信念,世界是不连续的随机性的粒子构成,人类数千年文明进化出来的语言系统,就是动态的随机概率事件。其二,物理思维再也难逃牛顿的经典本质思维方法,即找寻到百分之百确定性的规律,而信息论思维是研究如何把握不确定性现象,利用概率统计是不二法门。其三,语言本质上就是信息传播,只有从通信模型视角才能真正理解计算机的功能,对语言的编码、处理、传输、解码是计算机的强项,计算机是永远不可能理解语言的意思的。
在《数学之美》中,吴军博士对他的老师、师兄弟、同事的经历、掌故进行了叙述,让我们了解到这些世界一流的学科家、技术精英们的为人处世品质、鲜明个性、科学素养及其管理风格。例如贾里尼克对博士生的严酷淘汰,马库斯对学生的宽宏大度,但我感到他们有一样东西是共同的,就是对科学创造、顶尖人才的识别和器重,甚至是无条件的包容。如此为人的境界才是根本,因为伟大的科学创造毕竟是人做出来的,只有崇高的人文精神之下才能造就顶尖的人才、一流的科学和技术。
观国内的学说界,官风盛行、人情充斥,与这些一流学说群对科学创造的赏识、对个性人才的包容,对科学探索的热诚,可谓相去甚远。
看来,我们只能寄希望于年轻一代,但愿吴博士的《数学之美》,能让我们的学子们,初步体验到科学精英们卓越的才智与情怀。
《数学之美》读书笔记 篇5
我在想,为什么我们要学习数学?也许这个问题成年人有一万个答案,可是当我们第一次走进教室,学习数学的时候,大概率还是个孩子,你怎么跟一个孩子解释为什么要学习数学呢?我把这个问题抛给了一个朋友,他说:“为了提高思维逻辑能力,这是我初中老师在第一节数学课上告诉我们的”。或者一位5岁的小朋友又会问:“什么是逻辑能力呢?”
也许从出生第一天,我们就一直在被动的接收一些东西,父母的劝导,老师的.传授,可5岁的孩子还是会把玩具散落一地,6岁的孩子仍然会因为父母不给买玩具而嗷嗷大哭,无论你怎么劝导一个人,怎么劝诫一个人,他可能仍然会犯你认为会出现的错误。我记得有位教育专家这么说:“你告诉宝宝他把玩具弄坏了,就等于丢了10个棒棒糖”,从此以后这个宝宝可能会更加珍惜玩具。这个方法很简单,但是貌似最有效。数学是什么?数学不就是把复杂的东西简单化么?
现在我们再回答前面的问题:为什么我要学习数学?我们可以这么跟5岁的小朋友说:“妈妈给你10元钱,让你买酱油,酱油7元、棒棒糖1元一个,剩下的钱你可以买几个棒棒糖?”或许想吃棒棒糖的就会苦思冥想一番,或许未来妈妈真的给他10元钱去买酱油,结果回来就变成了一瓶酱油和3个棒棒糖。或者再过一段时间,这位小朋友会选择6元的酱油,因为可以获得4个棒棒糖了。他这么计算着:7 3和6 4都可以等于10,那么如果要必须买酱油的情况下,1 9也可以等于10。我们都知道也有1元的袋装酱油,于是9个棒棒糖到手了。任何知识的魅力都在于自我的发现,只有你对它产生了无限的兴趣,你就会不断的发现它的美,《数学之美》也可以变成《物理之美》。
有些人会说,上面的例子是利益驱动型,不是兴趣驱动型,对于一个孩子来说,你能指望他向成人那样:“我需要的不是物质世界,我需要的是精神世界?”5岁宝宝最喜欢做得事情就是在吃和玩上面,请问,成年人不也是如此么?这就是天性。只不过成年人的自控能力足够大罢了。
我们回到书本上,这本书是否合适自己?如果没有专业的数学知识,很难读懂。但是它又有着无限的魅力,让你不自觉的读下去,为什么?因为“数学之美”,虽然大多数人看不懂里面的公式,但是能够明白数学能解决的问题:概率统计学能够解决自然语言处理、布尔代数能解决搜索引擎的问题、有限状态机和动态规划能解决地图问题、向量 特征向量 余弦定理能解决自动新闻分类问题、最大熵模型解决金融问题,看着看着我就莫名的产生了一种想要学习算法的冲动,这不就是本书的意义所在么?
《数学之美》读书笔记 篇6
这本书一共3章,主要介绍了这些数学方法:统计方法、统计语言模型、中文信息处理、隐含马尔科夫模型、布尔代数、图论、网页排名技术、信息论、动态规划、余弦定理、矩阵运算、信息指纹、密码学、搜索技术、数学模型、最大熵模型、拼音输入法、贝叶斯网络、句法分析、维特比算法、各个击破算法等。从第一章开始其明了幽默的语言就深深的吸引了我,让我觉得如果早一点看这本书,也许数学之于我就是另一番天地。
第一章里作者从原始人类的通信方式开始入手,人类最早利用声音进行的通信依赖于开篇给出的"编码―传输―解码"的基本原理,指出原始人的通信方式和今天的通信方式没什么不同,这世界上近现代最普遍的原理大部分都在人类发展的历史上被无意识的使用着。
第六章信息论给出了信息的度量,它是基于概率的,概率越小,其不确定性越大,信息量就越大。引入信息量就可以消除系统的不确定性,同理自然语言处理的大量问题就是找相关的信息。信息熵的物理含义是对一个信息系统不确定性的度量,这一点与热力学中的熵概念相同,看似不同的学科之间也会有着很强的相似性。事务之间是存在联系的,要学会借鉴其他知识。
这本书里也能找到不少在学的课程知识,如大学专业课里,数电总是要比模电简单不少,而自然界里大部分的信号都属于模拟信号。所谓模拟信号,是指从时间和数值两种维度上看来都是连续变化的信号。在实际电路中,模数转换是一个很重要的过程,将预处理的模拟信号经过模数变换为数字信号,然后进行数字信号处理。而数字化处理有很多优点,比如功能强大、抗干扰能力强、易于传输等。
简而言之,如果没有数学,就没有数字信号处理和传输的概念,而数字信号传输在当下大规模的集成电路里是必不可少的,这是通信成功的基本要求。
作者把生活中遇到的复杂的问题,以简单清晰,直观的模型或者公式展现出来。我们可能过于注意生活中的种种奇妙现象,往往忽略了追求其理论逻辑的演绎,而这,也是大部分问题的主要根源。
罗素曾经说过:"数学,如果正确地看,不但拥有真理,而且也具有至高的美";爱因斯坦也曾说过:"纯数学使我们能够发现概念和联系这些概念的规律,这些概念和规律给了我们理解自然现象的钥匙。"数学在所有科学领域起着基础和根本的作用。"哪里有数,哪里就有美"。在这里,我也想把《数学之美》真诚推荐给每一位对自然、科学、生活有兴趣有热情的朋友,不管你是从事职业,读一读它,会让你受益良多。
吴军老师在《数学之美》中提到:"这本书的目的是讲道而不是讲术。很多具体的搜索技术很快会从独门绝技到普及,再到落伍,追求术的人一辈子工作很辛苦。只有掌握了搜索的本质和精髓才能永远游刃有余"。回到我们日常的生活中,需要学习的东西、技术太多太多,如果一味地只为去追技术的脚步,那么我们也会很累很累。然而基本的原理却是没有怎么变化的。只见森林,不见树木,难免迷失;站在高处向下看,也许我们一直看不到底,但是站在底处却是可以看见底的。
《数学之美》读书笔记 篇7
人们发现真理的形式上从来都是简单的,而不是复杂和含混的。――牛顿
自小就学数学的我,并不觉得它是美好的。于我而言,数学就像紧箍咒一样,不能提,一提。就头疼。
而看了吴军博士所写的《数学之美》后,我对数学的感觉,从以前的被动获取和勉强学习,变成了强烈热爱和主动积极的学习。这原因就在于我发现了它的价值,它的一枝独秀,不可或缺的地位,数学的博大精深和对其相关的各类事业的发展的价值已使我深深陶醉其中。这本书中有很多复杂且长的公式,但这并不妨碍大众的阅读,因为它并非在于让你了解更多it领域的知识,而是用了大量篇幅介绍各个领域的典故,让我们感受数学思维。这就像李欣教授所说:“成为一个领域的大师有其偶然性,但更有其必然性。其必然性就是大师们的思维方法。”
英国哲学家弗朗西斯・培根在《论美德》这篇文章中讲:“美德就如同华贵的宝石,在朴素的衬托下最显华丽。”数学的美妙,也恰恰在于一个好的思维,好的方法。
在《数学之美》十四章,我被它的标题吸引到了。“余弦定理和新闻的分类”,这俩看似八竿子打不着。却有着紧密的联系。可以说,新闻的分类很大程度上依赖的是余弦定理。我们都知道,计算机处理一个问题是让他去算,而不是像人类一样理解了它,再去解决。而科学家们遇到这个问题,却用了另一种思维,他们把文字的新闻变成一组可计算的数字,然后再设计一个算法来算出任意两篇新闻的相似性。稍详细一些就是:对于一篇新闻中的所有实词。计算出它们的tf-idf值,再把这些值按照其在对应词汇表的位置依次排列就得到一个向量,这即新闻的特征向量。这时,就可以通过计算两个向量夹角来判断对应的新闻主题的接近程度,这也就要用到余弦定理了。我在必修五数学书上学到余弦定理时,很难想象它可以用来对新闻进行分类。在这里我又一次看到了数学工具的用途。
在书中,我也了解到了数学的发展实际上是不断的抽象和概括的过程。这些抽象了的方法看似离生活越来越远,但他们最终能找到应用的地方,布尔代数便是如此。
布尔代数的简单不能再简单了。运算的元素只有两个0和1,基本的运算只有“与”、“或”和“非”。几乎就是我们现在所学的“判断命题真假”。在布尔代数提出后的80多年里,他确实没有什么像样的应用。直到1938年香农在他的硕士论文中指出,布尔代数来实现开关电路。才使得布尔代数成为数字电路的基础。正是依靠这一点,人类用一个个开关电路最终“搭出”电子计算机。
这些,都能体现作者“简单即是美”的思想。他在书中也写道:“数学的精彩之处就在于简单的模型可以干大事。”这些,也都是我从未感受到过的。并且,在这本书中,作者也用了不少篇幅来介绍通信领域的世界级专家,让我对真正的世界级学者有更多的了解和理解,比如贾里尼克,google ak-47的设计者――阿米特・辛格博士,自然语言处理的教父米奇・马库斯等等。
爱因斯坦说过:“从希腊哲学到现代物理学的整个科学史中。不断有人力图地表面上极为复杂的自然现象归结为几个简单的基本概念和关系,这就是整个自然哲学的基本原理。”这本书把数学在it领域的美丽予以了精彩表达,我也知道,把一件复杂的事用简单的语言表达出来,并非易事,这应该也是各界人士都对这本书予以好评的原因吧。
当然,我也明白,欣赏美不是终极目的,更值得我们追求的是创造美境界。
还有,希望未来的自己,无论生活好与坏,都能少一点浮躁,多一点踏实和对自然科学本质的好奇求知。
《数学之美》读书笔记 篇8
本书介绍了google产品中涉及的自然语言处理、统计语言模型、中文分词、信息度量、拼音输入法、搜索引擎、网页排名、密码学等内容背后的数学原理。让我们看到了布尔代数、离散数学、统计学、矩阵计算、马尔科夫链等似曾相识的内容在实际生活中的应用。相比于其他数学题材书籍,吴军老师把抽象、深奥的数学方法解释得通俗易懂,书中同时引用了诸多的历史典故和人物介绍,给人以很多启发,也让人由衷感叹数学的简洁和强大。
虽是数据专业毕业,但是才疏学浅,无力对数学的美进行阐述。仅就书中两个比较喜欢的地方发表一点不成熟的见解,与诸位共勉。
其一,在讲google的搜素引擎反作弊时谈到做事情的两种境界“道”和“术”,术就是具体的做事方法,而道则是隐藏在问题背后的动机和本质。在术这个层面解决问题要付出更多的努力,有点类似于我们常说的“头疼医头,脚疼医脚”,暂时不疼了,过几天复发了,再去医治,如此往复,无法从根本上解决;而只有找到了致病原因,才能做到药到病除,根本治愈。本人之前参与过行内月终自动核对的研发,月终核对初期数据的不一致性只能靠数百业务人员人工核对数据差异,然后修改数据,每月1日都要加班加点,工作量很大,这是从术上解决问题。后来找到了产生差异的原因是会计核算时的利息调整造成的,把这些数据接过来进行相应冲减后差异就消失了,业务人员也不用来加班了,这才是从道上解决问题。
其二,是在做中文网页排名时提到的从业界成功的秘诀之一:“先帮助用户解决80%的问题,再慢慢解决剩下的20%的问题。许多时候做事失败,不是因为人不够优秀,而是做事的方法不对。一开始追求大而全的凯发游戏的解决方案,之后长时间不能完成,最后不了了之”。我们在做项目时也是一样,业务有时要的功能非常急,可能有些功能也实现不了(比如系统响应时间长、查询明细不能支持省行等)。这时我们就要将焦点关注在那些可以实现的80%的功能上,哪怕刚刚上线的系统界面丑点,操作复杂点,反应速度慢点,但是至少业务有可用的系统,剩下时间再去优化那剩下的20%。这样可以帮助我行抢占先机,在与同行业的竞争中取得主动。如果等待我们把所有的细节都搞清楚再动手开发,力求完美,那么很可能系统能够上线的时候业务已经不需要了。
数学之美,也就是简单之美。希望大家能够喜欢数学,喜欢数学之美。
《数学之美》读书笔记 篇9
吴军2012年的作品,源于其在谷歌黑板报的系列文章,讲述数学方法在信息技术中的应用,说明了为什么科学研究中方法论如此的重要,以及数学如何简单优雅地解决问题,直达本质。对比他的其他作品比如《浪潮之巅》、《硅谷之谜》,本书比较偏技术,属于目前大热的数据科学(data science)范畴,在云计算、大数据和人工智能等成为常态和趋势的今天,适合所有对it技术及相关管理人员阅读。对我而言,最大的收获包括:
规则vs.算法:自然语言处理,在早期几十年基于文法规则都无法达到可应用的效果,终于在转变为基于统计方法且积累了足够数据后,形成了突破,达到了今日可大规模商用的效果。再次说明了数据及算法在今日的重要性。
一些常见应用涉及的优化算法:搜索相关(分词、网络爬虫、索引、结果排名、广告及反作弊)、文本处理(新闻分类、广告相关性、输入法)、地图路线规划、信息指纹、密码学等。这些算法不止适用于这些应用场景,还可以在其他许多地方借鉴,比如用户评论分析也需要用分词和语义分析,许多价值优化算法都需要用到期望值最大化和逻辑回归等。
优雅的理论模型:在初始阶段,出于时间和成本考虑,在技术实现上可能会使用一些拼凑的方法,甚至山寨,但是这种方法并不可持续,很难进行系统化的优化,开发维护成本都很高,最终会遇到灾难性问题。做事情需要有境界,最求简单而优雅的理论和工程实现,这在长期是非常有好处的。
吴军使用浅显易懂的语言,把解决问题的思路和复杂的数学模型讲得很清楚,虽然理解延伸阅读里的具体数学公式还是有些挑战。其实重要的是思想和方法,具体的实现可以在用到时再进一步的了解。如何用简单的语言把复杂的技术讲清楚,也是我工作的需要,要不断学习磨练。书里提到了启发吴军这方面能力的两本书,即《从0到无穷大》和《时间简史》,会有要去看下。
《数学之美》读书笔记 篇10
数学用在模型上而不是现实世界中,需要抽象思考出模型,即数学对象是其所做。数系扩充中,复数i并没有比无理数根号2更特殊的地方,因为它们作为抽象的数学构造,如果充分自然,则必能作为模型找到它们的用途。实际上正是如此。
数学中有个根本性的重要事实:数学论证中的每一步都可以不断地分解成更小更清晰有据的子步骤,但是这样的过程最终会终止。原则上,最终会得到一条非常长的论证,它以普遍接受的公理开始,仅通过最基本的逻辑原则一步步推进,最终得到想要求证的结论。所以,任何关于数学证明有效性的争论总是能够解决的。争论在原则上必然能够解决这一事实使数学作为一个学科是独一无二的。在这里,公理系统的主要问题不是真实性,而是自洽性和有用性,即数学证明就是由特定前提能够得出特定结论,而不考虑该前提是否正确。
我不清楚这一“根本性的重要事实”在现实中的使用范围有多大,但由此可以聊一点别的问题。现实中,如果甲对事情有a观点(或说价值观),乙有b观点,并为此争执。有下面几种情况:
1、在上述的范围之外,即没有定论。
2、有定论,但是双方都没有给出足够的证据证明和反驳。
3、有定论,一方给出了足够的证据(或者反驳理由),因为表达能力导致表述不清晰而没有说服对方。
4、有定论,一方给出了足够的证据(或者反驳理由),因为对方理解不够或理解偏差导致没有被说服。第234条与这几项有关:知识量,表达能力,理解能力,对外界的认知和自我认知。其中语言本身的局限性会一定程度上影响表达和理解,认知能力是一项综合的要求很高的能力。“评论”这件事就是个很合适的例子。如果说创造更需要的是才气,那么评论更需要的就是能力。但是,无论双方是否知道有无定论,很多情况下需要陈述不少或很多证据或反驳理由,由第234条可知人与人交流的效率很低,并且可能伴随一些冲突。若考虑到一些人的利益因素等,交流会更复杂。